Interaction of n-alkylguanidines with the sodium channels of squid axon membrane
نویسندگان
چکیده
The effects of n-alkylguanidine derivatives on sodium channel conductance were measured in voltage clamped, internally perfused squid giant axons. After destruction of the sodium inactivation mechanism by internal pronase treatment, internal application of n-amylguanidine (0.5 mM) or n-octylguanidine (0.03 mM) caused a time-dependent block of sodium channels. No time-dependent block was observed with shorter chain derivatives. No change in the rising phase of sodium current was seen and the block of steady-state sodium current was independent of the membrane potential. In axons with intact sodium inactivation, an apparent facilitation of inactivation was observed after application of either n-amylguanidine or n-octylguanidine. These results can be explained by a model in which alkylguanidines enter and occlude open sodium channels from inside the membrane with voltage-independent rate constants. Alkylguanidine block bears a close resemblance to natural sodium inactivation. This might be explained by the fact that alkylguanidines are related to arginine, which has a guanidino group and is thought to be an essential amino acid in the molecular mechanism of sodium inactivation. A strong correlation between alkyl chain length and blocking potency was found, suggesting that a hydrophobic binding site exists near the inner mouth of the sodium channel.
منابع مشابه
Properties of appropriately and inappropriately expressed sodium channels in squid giant axon and its somata.
Neurons that form the giant axons in squid by axonal fusion in the stellate ganglion are inexcitable and do not express functional voltage-controlled sodium (Na) channels in their somata in vivo. These cells do express Na channels in the soma membrane in vitro, however, provided they have been axotomized. We describe here voltage-clamp experiments on the isolated cell bodies maintained in prima...
متن کاملKinetic analysis of pancuronium interaction with sodium channels in squid axon membranes
The interaction of pancuronium with sodium channels was investigated in squid axons. Sodium current turns on normally but turns off more quickly than the control with pancuronium 0.1-1mM present internally; The sodium tail current associated with repolarization exhibits an initial hook and then decays more slowly than the control. Pancuronium induces inactivation after the sodium inactivation h...
متن کاملInitiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields.
In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, th...
متن کاملDynamics of 9-aminoacridine block of sodium channels in squid axons
The interactions of 9-aminoacridine with ionic channels were studied in internally perfused squid axons. The kinetics of block of Na channels with 9-aminoacridine varies depending on the voltage-clamp pulses and the state of gating machinery of Na channels. In an axon with intact h gate, the block exhibits frequency- and voltage-dependent characteristics. However, in the pronase-perfused axon, ...
متن کاملCurrents recorded through small areas of squid axon membrane with an internal virtual ground voltage clamp.
A new voltage-clamp apparatus for the squid axon has been implemented to enable recording of currents through small areas of axon membrane. The performance of this clamp was tested by recording total sodium currents from perfused axons (I total) and sodium currents from small membrane patches (I patch), which were recorded from inside the axon with an L-shaped pipette. The I patch records, alth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 76 شماره
صفحات -
تاریخ انتشار 1980